作者
Debora Lu

发布
09/03/2020

本文阐述了LCMS仪器对氮气的要求,以及设计和选择氮气发生器时应考虑的问题,包括氮气纯度和氮气质量,以及氮气发生器的选择对LC-MS运行的影响。

概述

本文阐述了LCMS仪器对氮气的要求,以及设计和选择氮气发生器时应考虑的问题,包括氮气纯度和氮气质量,以及氮气发生器的选择对LC-MS运行的影响。

介绍

杜瓦罐和钢瓶高纯氮的纯度一般是99.999%,也可采购到更高纯度的氮气,例如GC载气(是的,发生器也可用于提供载气!)纯度高达99.9999%。工业上传统的深冷空分制氮法,以空气为原料,利用液氧和液氮的沸点不同,采用低温蒸馏的方式,使它们分离来获得氮气。氮气是一种惰性气体,无法直接测试,氮气纯度主要指非氧化气体的含量,其中包括氮气和其他惰性气体等。

通常我们会看到LC-MS适配的氮气发生器显示纯度在98-99.5%之间,为什么不提供99.999%的纯度呢?为什么所有LC-MS仪器制造商都建议氮气发生器产气的纯度大于95%就足以满足质谱的要求?(本文中所提到的LC-MS用气指的是离子源部分用的雾化干燥气,作为碰撞气用的高纯氮气,耗气量很少,一般由钢瓶提供)

让我们先来看看LCMS的技术特点:

简单来说,氧气并不会影响LCMS信号强度。事实上无碳氢化合物、无颗粒、干燥的空气是完全可以用于LC-MS分析的。我们选用氮气的原因是,在电离阶段,有机溶剂+氧气+高热+高压会导致爆炸,这不仅是一个巨大的安全风险,而且会对昂贵精密的LC-MS造成极大的损害。

纯度实际上只是我们评估氮气的一个参数。仅仅因为一种气体纯度高,并不意味着其中没有像碳氢化合物(实验室溶剂挥发产生的VOC)、邻苯二甲酸酯类、硅氧烷类和其他影响灵敏度和基线的有机化合物,以及水份和会污染离子源的灰尘颗粒等,这些会造成昂贵的仪器清洁、维护和维修的成本。

LC-MS离子源部分需要一个低氧环境,且不含颗粒和有机污染物,以防止发生爆炸,减少维护和离子源的清洁操作,以保证仪器本身的性能。

接下来让我们看看氮气发生器的技术特点:

从氮气发生器生产商的角度来看,有两个看起来一样但实际上是完全不同的概念,即氮气纯度和氮气质量。氮气纯度是指主要是指非氧化气体的含量(因为氮气不能直接测量,一般以氧气的含量来推算)。氮气质量定义了氮气中其他杂质的含量,通常是通过分析氧气、水分、碳氢化合物和其他有机物质的含量,这些物质可以通过分析方法分别进行测试和报告。

氮气纯度

通过良好的产品设计、生产工艺可实现纯度在98-99.5%之间的氮气。空气由78%的氮气、21%的氧气和1%的其他气体组成。通过分离得到的氮气,纯度要求越高,需要的空气也越多。纯度要求越低,所需空气就越少。而空气消耗与氮气纯度之间的关系不是线性的,详细见下图。

尤其是当氮气纯度大于99.5%时,所消耗的空气量呈指数增长。关于氮气发生器原理的文章请点击以下链接(http://www.peakscientific.cn/articles/yuanli/)。

LCMS氮气发生器

毕克用于气相色谱载气的氮气发生器纯度>99.9999%,这一纯度通过测量氧残余量、水份和碳氢化合物得出(有趣的是,要想测量这些氮气中的残余物,我们只能利用GC才能做到,其他的仪器设备都无法检测这种量级的残留物杂质)。但如图所示,在这种氮气纯度下,我们需要大约12-14倍的空气量。但因气相色谱仪用气量较少,所以如此高的空气消耗量就不是主要问题。

但一般的LCMS离子源部分的氮气用量在24-30l/min,有些仪器高达60l/min,以纯度99.999%为例,我们需要向氮气发生器提供325-750l/min的空气。然而,在纯度为99.5%时,空气消耗量为75-150l/min。因此对氮气发生器的总体成本、尺寸、噪音和功耗都有很大的影响。所以,当使用氮气发生器时,高纯度氮气用于对LCMS离子源供气是不可取的。用户在选购发生器的时候需要注意什么?首先,若看到用于LC-MS离子源部分的氮气发生器宣称氮气纯度可高于99.5%,应有所质疑,因为我们知道,考虑到发生器的尺寸、噪音和成本,这其实是不合理的。客户还应选择信誉可靠的气体发生器生产商,因为如果氧气含量超过4%,那么在工作条件下,爆炸风险很高,而设计不佳的氮气发生器往往不能很好地控制氧含量。另外,过滤系统,特别是除水系统,应是高质量的,并根据使用情况定期更换。这将大大降低LC-MS维护的成本。

氮气质量

如前文所述,氮发生器选择性地去除氮气以外的其他分子,包括氧气、水份等。分离过程中还有哪些分子未被除去呢?首先是氩气,但由于是惰性气体,不会对LC-MS的灵敏度、离子源污染或爆炸造成任何风险。所以,将其归入氮气含量中是完全没有问题的。但其他的像碳氢化合物、硅氧烷类、邻苯二甲酸酯类、灰尘、溶剂、清洁用化学品(例如地板清洁材料等)等都会污染离子源,并出现在质谱图上。实际上,氮气发生器产生氮气的质量还取决于周边的空气质量。如今的环境污染日益增多,诸如汽车尾气、电站以及化工厂排放、化学制品、食品生产加工、日常工作中使用的溶剂、VOC(想想买新车或家具以及粉刷我们的办公室或公寓时的味道,我们将花费大量的时间和精力来去除这些气味,这些气味通常是VOC释放的)等都将出现在环境空气中。因此,一个好的氮气发生器需要一个完善的去除杂质的过程。 

在我以往的经验中,有很多次遇到此类问题。我最美好的记忆是当我在家乡附近的一个食品检测实验室工作时。我的家乡是特伦特河畔伯顿镇,是英格兰中部的一个小镇。它以坐落在特伦特河上而闻名,特伦特河是英国最好的淡水来源之一。正因为如此,它拥有庞大的啤酒酿造业,也以马麦酱而闻名(我叫它英国臭豆腐)。正是这些生产过程,使这个区域周围的空气中总是含有化学物质,这些物质会干扰各种分析测试过程。我记得有一个案例,一位客户在LCMS校准过程中测到了硅氧烷物质,来源不明,经摸索,结果发现实验室有一个新的玻璃隔板,密封玻璃用的密封剂挥发产生了小分子链的硅氧烷,而污染了室内空气。另一个问题是汽车内部制造商试图制造低VOC含量的产品,但是当比较塑料材料释放出的VOC量与周围背景空气时,他们发现环境背景空气VOC含量变化很大,就像风向一样难以预测。

那么用户可以从中学习到什么呢?

由于氮气分离工艺不能去除这些物质,氮气发生器应具有去除这些杂质的过滤装置,且应根据使用情况定期更换。这将减少离子源的维护和清洗,并防止谱图上出现鬼峰等其他干扰。我们的用户在高质量的分析级溶剂上花费了大量的时间和成本,同样也应该重视气源的质量。

希望这篇文章能为用户提供有用的信息。

订阅Peak电子简报以获取产品资讯和Peak最新动态