氢气作为载气用于复杂的混合实验
摘要
这篇技术概要旨在阐明用氢气作载气用于GC-MS的表现性能。我们比较了氢气作为载气和氦气作为载气用于分析的表现性能。结果显示,质谱使用氢气比氦气得到的结果更优,运行时间更快,且峰值更高。
简介
由于全球性的氦气短缺,很多GC-MS使用者开始使用氢气作为GC-MS的载气,然而对于氢气的安全性以及与分析物的反应性还是会有一些担忧。
实验
Reagent:
0.5 μL of a 76-compound mixture
(Restek Megamix cat. No. 31850) in DCM
MS:
Bruker SCION-SQ GC-MSD
MS source: 330 °C
Mass Range: m/z 45-500
2 min solvent delay, 120 ms scan time
GC:
Column: BP-5MS column (20m x 0.18mm with 0.18 μm film thickness)
Oven: 45 °C (1 min hold) ramped at 30 °C/min to 310 °C (5 min. hold)
Injection: Pulsed-split injection (inlet temperature 290 °C , pressure 40 psi for 0.3 min,
70:1 split)
Carrier:
Peak Precision Trace Generator
Hydrogen, 1 mL/min
结果
结果显示相较于用氦气,使用氢气作载气,质谱可缩短运行时间,且对峰的分离并没有影响(Figure 1)。结果还表明,氢气不仅可以提高运行时间的效率,还提高了信号的强度和分辨率。
讨论
氢气发生器生产的氢气安全,是GC-MS用的氦气的合适替代。另外,在柱温箱内安装氢气泄漏探测器,和发生器内部的故障安全机制实验室使用者可以安全地使用氢气。
EPA方法8270既可以使用氦气作载气,也可以用氢气作载气。分析结果显示,氢气虽然有偏高的线性速率,但得到的分离效果更好。氢气比氦气的粘性更低,效率更高,可以使用更细的毛细管柱,使得色谱有更高的分离效率。
Figure 1. 结果显示用氢气作载气复合物被更快地洗脱,且峰值更高
Figure 2. 用氢气作载气虽然洗脱时间更快,但Indeno(123-cd)pyrene和Dibenz(ah)anthracene之间有了分离
Ed Connor DR.SC. is GC-MS Application Specialist, Peak Scientific, Inchinnan Business Park, Scotland, UK . Prior to joining Peak in February of this year, Ed completed his Dr.Sc. at ETH Zurich in Switzerland using GC-MS to look at herbivore induced plant volatiles and their interaction with beneficial insects. He then joined the University of Zurich where his work focused primarily on volatile collection methods and analyses using GC-MS and GC-FID . +44 141 812 8100, econnor@peakscientific.com
Notes
1. For more information on the Bruker SCION-SQ™ GC-MS, please visit http://www.bruker.com/en/products/mass-spectrometry-and-separations/gc-ms/scion/overview.html
2. For more information on the Peak Precision Hydrogen Trace generator, please visit http://www.peakscientific.com/peak-precision/
Trademarks
SCION-SQ™ is a Trademark of Bruker Corporation.